Глава 2.3. Серый камень


Благодаря развитию науки появились и другие методы определения палеотемператур. Так, установлено, что соотношения магния и кальция в створках некоторых видов моллюсков изменяются в зависимости от температуры среды. С ростом температуры доля магния возрастает. В 1947 г. Г. Юри предложил использовать в тех же целях соотношение изотопов кислорода О18 и О16 в раковинах моллюсков. Разработанная методика позволяет определять температуру воды палеобассейнов с точностью до 1 °С.

Все геологи в душе художники, поэты и немного фантазеры. Но не ради удовлетворения своих эстетических чувств или фантазии они занимаются сложной наукой и реконструкцией палеогеографической обстановки. Им не требуется машина времени Г. Уэллса для того, чтобы оказаться где-нибудь в Сибири на берегу кембрийского моря, существовавшего полмиллиарда лет назад. Мертвую унылую картину безжизненного континента и примитивный органический мир этого моря они могут описать с научной точностью и последовательностью без всякой машины времени. В кембрийский период в атмосфере еще отсутствовал кислород, он накопился значительно позже, а его источником стала наземная растительность. На суше богатая растительность развилась лишь в девонский период, примерно 300 млн лет назад.

В жизни геологи прежде всего практики. Главная их задача — обеспечить страну минеральным сырьем. Читателю, наверное, приходилось держать в руках

Коркинское месторождение угля. Челябинский угленосный бассейн. Расслоение мощного пласта угля (по А. Д. Рубану)

кусок каменного угля, рассматривая которым можно было заметить отпечатки листьев, окаменелые куски древесины н другие, иногда весьма четкие, следы растительности. Как установлено учеными, углеобразующая растительность появилась лишь в середине палеозойской эры (в конце девонского периода). Следовательно, бесполезно искать промышленные залежи угля в группе пород, накопившихся в более древние отрезки времени. Для нахождения залежей угля необходимо хорошо изучить палеогеографию отложений, выяснить места пышного расцвета, накопления и захоронения растительности. Наиболее благоприятные условия возникают в прибрежных болотистых низменностях и иногда в морском мелководье. На рисунке показан разрез Коркинского месторождения Челябинского угленосного бассейна. Угольные пласты имеют толщину от 55 до 200 м. Вниз по падению угленосная толща расщепляется на серии утоняющихся пластов, которые сохраняют рабочее значение на больших расстояниях.

В образцах кораллового известняка, даже древнего, нетрудно заметить наличие многочисленных пустот — пор. Такие пустоты могли сохраниться на месте мягких телец животных. Иногда пустоты возникают позже вследствие растворяющего действия воды — такой процесс называется выщелачиванием. Теперь представьте себе, как выглядят древние коралловые рифы, например шиханы, погребенные в толще осадочных пород. Чем заполнены поры? Они могут бмть заполнены водой, нефтью или газом. Эти три минерала (конечно, минералы только в жидком и газообразном состоянии) являются ценными полезными ископаемыми.

Нефть и природный газ до сих пор служат основными поставщиками энергии, без которой пока невозможно развитие народного хозяйства. В нашей стране нефть и горючий газ были обнаружены в погребенных рифах между Уралом и Волгой сперва в Чусовских городках в 1929 г., а затем в 1932 г. в Ипшм-баево. Именно с этих месторождений началось освоение и развитие Волго-Уральской нефтегазоносной области, которую иногда называют «Второе Баку». В настоящее время залежи нефти и газа в погребенных рифовых массивах известны не только в различных нефтегазоносных районах нашей страны, но и во многих других государствах (на Ближнем Востоке, США, Мексике и др.).

Попробуем мысленно разрезать участок земной коры, содержащий погребенный риф с залежыо нефти. Залежи разместились в самых приподнятых выступах рифового массива. В заполненном водой пористом теле рифа нефть и газ всплывают, постепенно собираясь в наиболее приподнятых участках. Разумеется, необходимо перекрыть риф сверху непроницаемыми породами. В противном случае нефть и газ будут всплывать по пористым и проницаемым породам вверх до земной поверхности. В Ишимбаево рифы перекрыты непроницаемыми образованиями, состоящими из солей и ангидритов. Нефть оказалась в приподнятых выступах запертой, как в ловушке. Участки пористых пород, в которых нефть и газ могут собраться в залежь, так п именуются геологами ловушкой, а непроницаемые породы, перекрывающие залежь сверху, — покрышкой.

Некоторые разновидности биогенного карбоната кальция СаС03, например жемчуг, используются в ювелирном деле и довольно высоко ценятся. Цвет жемчуга, кроме наиболее ценного белого, бывает желтый, розовый и иногда черный. Формы жемчужин округлые, самые разнообразные — чем ближе форма к шарообразной, тем дороже жемчужина. Удивительная красота жемчуга объясняется опалесценцией — рассеянием света вследствие его оптической неоднородности. Опалесценция у жемчуга объясняется наличием тонких наслоений перламутра, состоящих из мельчайших кристаллов арагонита (СаС03) ромбической формы. Жемчужины образуются внутри створок раковины в телах некоторых видов моллюсков. Моллюски обволакивают перламутром в целях самосохранения попавшие в раковину песчинки или мелких

вредителей (клещей). В настоящее время широкое распространение получило искусственное разведение жемчужных раковин, особенно в Японии.

В нашей стране жемчужные раковины разводят на Камчатке. Разнообразие минералогического состава водоемов позволяет надеяться, что выращиваемые жемчужины будут иметь всевозможный цвет и оттенки, так сказать, на любой вкус.

Сами по себе известняки также являются весьма ценным полезным ископаемым. Используются они для приготовления извести, в металлургии (флюса), агрономии, но главным образом как строительный материал. Вспомните нашу Белокаменную. Каменные здания из подмосковного известняка появились в Москве еще в XIV в. В XIV — XVI вв. в городе и вокруг него было построено много каменных соборов и монастырей. Но в основном Москва оставалась деревянной, несмотря на указ 1704 г. о застройке центра города только каменными зданиями. Во время Отечественной войны 1812 г. две трети города сгорело. После пожара начались большие градостроительные работы по плану архитекторов О. И. Бове и Д. И. Жилярди с интенсивным использованием подмосковного известняка, и Москва приобрела свой белокаменный облик. Иногда, оказавшись погребенными на большой глубине и дополнительно сцементированные кальцитом, известняки становятся плотными, напоминающими мрамор, — мраморовидные известняки. Чаще всего они используются в строительстве для облицовки. В одном из вестибюлей станции метро Таганская колонны облицованы подмосковным мраморовидным известняком.

Не всегда известняки образуются из скелетов отмерших организмов. Некоторые плотные и довольно однородные разности возникают из выпавшего в осадок карбоната (СаС03) химическим путем. Весьма своеобразные известняки химического происхождения формируются в пещерах — сталактиты и сталагмиты. За несколько последних десятилетий спелеологами открыты многочисленные сталактитовые пещеры в различных горных районах мира. Причудливые натеки известняка, особенно подсвеченные цветным освещением, создают впечатление волшебных замков и других сказочных картин. У нас в стране наибольшей известностью пользуются Кунгурская пещера в Пермской области на Урале и Новоафонская пещера на

Кавказе. Открытие Новоафонской пещеры было отмечено Государственной премией СССР. Вход в пещеру находится на горе Иверской. Теперь со стороны Нового Афона в горе пробит туннель для электропоездов, доставляющих туристов легко и удобно прямо к чудесам подземного мира.

Породы, образовавшиеся из химических осадков, имеют широкое распространение в земной коре. С одним из их представителей Вы встречаетесь ежедневно, сидя за обеденным столом. Речь идет о поваренной соли (NaCl). Хемогенные породы чаще всего образуются на водоемах при выпадении солей в осадок.

Огромные запасы солей установлены в раннепалеозойских (кембрийских) породах Восточной Сибири. Здесь толщина соленосных отложений местами превышает 1 000 м, а площадь их распространения измеряется многими тысячами квадратных километров. Довольно трудно представить себе накопление такой огромной массы солей в высыхающем морском бассейне. Некоторыми учеными предполагается возможность проникновения соли в эти отложения из недр земли.

К этой же группе хемогенных осадочных пород относятся гипсовые, фосфатные, некоторые железистые (образующиеся обычно в прибрежной зоне) и глауконитовые породы. У солей отмечаются три замечательных свойства, имеющих для геолога большое значение — плохая проницаемость, хорошая растворимость и пластичность. Вследствие плохой проницаемости соленосные породы очень часто выполняют роль покрышек в ловушках для нефти и газа. Хорошая растворимость в природных водах приводит иногда к образованию пещер наподобие сталактитовых. В соляных пещерах, в отличие от сталактитовых, можно увидеть изумительную природную настенную роспись. Накопление солей в осадке не происходило монотонно. Очень часто тонкие прослои чистой белой соли чередуются с глинизированными темными прослоями, окрашенными примесями в голубые, рыжие и красные тона. Впоследствии слои сминались, образуя самые невероятные, как правило, плавные фигуры. В некоторых случаях на стенах пещер образуются вторичные мелкие кристаллики солей. Войдя в такую пещеру с электрическим фонариком, посетитель буквально ослепляется тысячами отблесков от поверхностей кристаллов.

4 Н. А. Еременко

Хорошая растворимость солей при сохранении плохой проницаемости может быть использована для создания в таких породах больших емкостей при малой затрате труда. В США, например, такие искусственные емкости используются для хранения запасов нефти. Действительно, это значительно проще, дешевле и безопаснее, чем строительство крупных металлических резервуаров. Впрочем, не всегда. На юге штата Луизиана велись разработки соли вблизи озера Пегнер. Озеро большое, свыше 500 гектаров, хотя и мелкое (около 1 м). Местное население его использовало для отдыха и рыбалки. Из шахты, заложенной на берегу, были проведены штольни (горизонтальные шахты), в которых для поддержания кровли использовались столбы соляной породы. В 1986 г. нефтяная компания «Тексако» поставила на воде разведочную скважину. Пройдя четыреста метров, скважина наткнулась на штольню. Вода из озера хлынула вниз, размыла соляные столбы, и кровля рухнула. Через час на месте исчезнувшего озера образовалась огромная воронка.

Свойство пластичности у солей проявляется на больших глубинах (несколько километров). Неравномерная нагрузка вышележащих пород на пласты соли вызывает их перемещение. Пласты сужаются в одном месте (месте оттока) и расширяются в другом. Сужение, вплоть до полного пережатия, наблюдается на более глубоких участках, где мощность и вес перекрывающих пород больше. На приподнятых участках образуются вздутия. Иногда соль находит в перекрывающих породах ослабленное место (например, трещину) и прорывается вверх. Так возникают соляные штоки.

Процессу продвижения соли способствует ее меньший удельный вес по сравнению с окружающими осадочными породами. Поднимаясь вверх, соляной шток приподнимает и дробит часть перекрывающих пород, в соляных куполах формируются многочисленные разрывы. Очень часто на поверхности у прорванного штока образуются соляные озера, например Эльтон. Как и в рифовых массивах, ловушки для нефти существуют не только в приподнятых частях купола, но и по бокам штока. В нашей стране нефтегазоносные районы с залежами нефти, связанными с соляными куполами, известны на равнинах Северного Прикаспия и на Украине. Такие же районы установ-

лены в Западной Европе, Северной Америке и других местах.

Обычно обстановка, благоприятная для накопления солей, оказывается подходящей и для накопления гипсоносных и ангидритовых толщ.

Гипс представляет собой сульфат кальция в соединении с водой (CaS04-2H20), кристаллизуется в виде тонких и толстых столбиков. Сросшиеся кристаллы напоминают ласточкин хвост. Этот минерал широко используется в строительной промышленности. С гипсом тесно связан взаимными переходами другой минерал — ангидрит — обезвоженный гипс (CaS04), поэтому в зависимости от природной обстановки оба минерала легко переходят один в другой. Ангидрит бывает белого, желтоватого или розоватого оттенка, но чаще всего слегка голубоватый. Плотные образцы легко поддаются обработке, и это их свойство используется для изготовления различных поделок.

Мы забыли о нашем образце глины, принесенном с поляны. Рассмотрим его. Глины имеют самое широкое распространение в природе, они состоят из настолько мелких зерен различных минералов, что их просто невозможно рассмотреть н опознать в приготовленном шлифе под обычным микроскопом. Размер частиц менее одной сотой доли миллиметра. Для изучения глин используются электронные микроскопы, дающие увеличение в десятки и сотни тысяч раз, и некоторые другие методы (термический и рентгеноструктурный анализы). Известны три основные группы минералов, образующие глины: каолиниты, монтмориллониты и гпдрослюды. Новообразование глпн за счет химических процессов сближает их с группой уже расвмотрен-ных хемогенных пород. Глинистые осадки накапливаются только в спокойной среде: в море — ниже уровня действия волн, на суше — во впадинах рельефа, озерах, старицах рек и др. Глины обладают многими очень интересными свойствами, такими, как пластичность, огнеупорность, способность поглощать н удерживать различные вещества (адсорбция). Эти и другие свойства используются человеком с незапамятных времен и весьма разнообразно.

Гончарное искусство — приготовление изделий из обожженной глины — одно из самых древних в истории человечества. Оно было известно в Месопотамии по крайней мере за 4 тыс., в Греции, Иране н Средней

Азии за 2 тыс. лет до н. э. Изготовленная керамическая посуда и другие изделия обычно украшаются цветным орнаментом. Кустарный гончарный промысел существует повсеместно до снх пор. Наверное, и у читателя в квартире найдется несколько красивых гончарных изделий.

В XII—XIII вв. в Европу из Китая стали проникать керамические изделия, имеющие белый цвет, звонкие, просвечивающиеся в тонком слое, — фарфоровые. Даже осколки этого искусственного камня высоко ценились. Многие ученые и алхимики тех времен пытались открыть секрет приготовления фарфора, но все безуспешно. В XIII в. известный итальянский путешественник Марко Поло проник в Китай и прожил там 17 лет (вернулся в 1295 г.). Марко Поло, рискуя жизнью, пытался проникнуть в тайну изготовления и обжига фарфора. Но добытые с таким трудом сведения оказались бесполезными. Лишь в XVI в. в Европе начали производить белую керамику — мягкий фарфор — не очень белый, мягкий, хрупкий II незвенящий — отдаленное подобие китайского фарфора. Для изготовления фарфора используют пластичную огнеупорную глину— каолин, полевой шпат и кварц. Европейцам не хватало каолина, название которому дано по хребту Као-Лин в Китае, где глина для производства фарфора добывалась по крайней мере уже в VI — VII вв. Каолинит образуется из полевых шпатов и других силикатов при выветривании в условиях теплого и влажного климата.

В первом десятилетии XVIII в. в городе Мейсон в Саксонии (теперь в ГДР) И. Бётгер и Э. Чирнхауз изобрели настоящий фарфор — к великой радости курфюрста Саксонии, который на фарфоре весьма обогатился. И до сего времени изделия из саксонского фарфора (знак фирмы — голубые скрещенные мечи) высоко ценятся на мировом рынке. В Англии также долго, но безуспешно искали секрет изготовления фарфора. При этом удалось создать своеобразный голубой, или английский, фарфор (см. цветную вклейку). По многим своим свойствам, в том числе и техническим, он хуже белого, но также довольно красив.



Мир глазами геолога, Еременко Н.А., 1990



Джентльмены удачи смотреть онлайн в хорошем качестве
Ирония судьбы, или с легким паром онлайн в хорошем качестве
Кавказская пленница, или Новые приключения Шурика онлайн в хорошем качестве